EQUILIBRIUM AND STABILITY OF A z PINCH IN
A MULTIPOLE MAGNETIC FIELD

M. G. Nikulin UDC 538.31:533.95

In the theoretical investigation of the dynamic stabilization of a current-carrying plasma
filament by a high~-frequency multipole magnetic field it is usually assumed that the cross
section of the filament has a circular form in equilibrium [1, 2]. This considerably simpli-
fies the calculations but it does not correspond to reality, since the surface of the plasma
must be fluted in the multipole field. An attempt to estimate the influence of the deformation
of the filament cross section on its stability against bending in the special case of quadrupole
field was made in [3], in which the paramcters were determined of the elliptical cross section
corresponding to a plasma filament with current in a quadrupole field and an expression was
found for the electrodynamic force acting on the filament in the case of long-wavelength kink
perturbations. However, this force was calculated incorrectly in [3]. In the present paper a
study is made of the equilibrium and stability of a current-carrying plasma filament against
kink perturbations in the general case of a multipole stabilizing field. Under the assumption
that the flute depth is small, the equilibrium form of the cross gection of the current-carry-
ing plasma filament in the multipole magnetic field is found and the components of the force
exerted by the field on the perturbed filament are calculated. It is shown that the external
field interacts with the current in the perturbed filament only in the case of a quadrupole field.
The results are discussed in connection with the problem of multipole dynamical stabilization
of a z pinch against kink perturbations.

1. Equilibrium of Current-Carrying Plasma Filament in a
Multipole Magnetic Field

We consider a perfectly conducting plasma cylinder with longitudinal surface current I; in an external
multipole magnetic field. The axis of the conductor coincides with the z axis of a cylindrical coordinate
system r, 6, z, and its surface is described by a function r = r(6), whose form is determined by the mag-
netic field.

The magnetic field B outside the plasma filament is a superposition of the field B, of the current I;
and the external multipole field By, which can be produced, for example, by passing currents I, in n pairs
of linear conductors arranged parallel to the axis of the system, the currents flowing in opposite directions
in neighboring conductors. The vector potential A of this field has only the single component Ay = Az (r, ),
which satisfies the equation

A4, =0 1.1)
and appropriate boundary conditions.

If it is assumed, as in [1, 2], that the plasma conductor has circular cross section of radius g, the so-
lution of Eq. (1.1) can be written in the form

A, = A () + Ax° (v, 9)

A= —Ayln(r/a), A, =—A,l(r/a)*—(r/a)")cosnb (1.2)
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Here A, and A are constants, which can be expressed in terms of the components of the field on the
surface of the cylinder. The field B = rot A near the cylinder has the components

B, =Y,B, l(r/ a)"! — (r/ a)“"‘ll. sin n0
By = By (r/a) 4- LB, (r/ a)* = (r/ a)~""!] cosn0 (1.3)

where By = 2nAp /a, By = Ayg/a = 2]y/ca, and c is the velocity of light in vacuum.
In the special case when the multipole field is produced by currents I in n pairs of linear conductors
parallel to the z axis but removed from it by the distance b,
B, = 4n (a ! by*(2I, / ca) (1.4)

Let us consider a more realistic case when the filament section takes the form determined by the ¢con~
dition of constancy of the pressure on the plasma surface. Assuming that the deformation of the filament
cross section due to the multipole field is small, we shall look for the equation of the filament surface in
the form

r@ =a+6(0) =a(if —6,cosnf), 61 (1.5)
The flute depth 6y is determined by the ratio of the fields By and B near the surface of the conductor.
Assuming that
| Br/ By[lima < 1 (1.6)
we shall look for the potential Ay in the form

A, = A+ A3, 0)
Ap = —Adn(r/a), An>=—14,(/a)" + A (r/a) " cos nd 1.7

[Ayand Ap are the same as in (1.2)] subject to the additional conditions

A, = Ay, + A2 = const (1.8)
B = (B, + B,)? -- const (1.9)

on the surface of the plasma (1.5). The condition (1.8) is a consegeunce of the translational symmetry of the
system; (1.9), of the equilibrium condition of the plasma. Expanding Az and B2 in a Taylor series, we ob-
tain in the linear approximation in §

Alreas = (A + AL 4 80A.0 7 )| rma = const = A.o (@) =0 (1.10)

B2| ra:8 == (Boag? =+ 2By Bom < 2Bee® 0By / 0r)|r=a = const = Beg® (a) = B02 (1.11)

Equations (1.10) and (1.11) are obvious if one remembers that the second and third terms in the brack-
ets depend on 6. From (1.10) and (1.11)

Bon = —-6 (6800 / 6r)|r=a, Azné == —6 (6A20 /I ar)l,-._a (1’12)

Using (1.7) and the equation By = rot Ay, we find from (1.12) for n > 1 (when n = 1 equilibrium is im-
possible)
1

_ono-t I
Av=g—pdn S iy

AL = — An[/ roe et [ —”-!, cos nft (1.13)

_a—/ n—1 " a

The magnetic field in the neighborhood of the plasma filament then has the components

1 ©for otn-l nt-1fr Lot
B B[ e S s (1-14)
/- o \n- - -n=
B Byl [ L) A g
\a 2 Ly a n—1:aj
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Let us consider the behavior of the multipole field near the axis of the system under different condi-
tions. It follows from the expressions (1.3) and (1.14) that whenr = a

Byn = 1/,B, cos nB, By, = B,cos nb.
By, = —[B, / (n — 1)) cos nf

in the absence of a plasma, in the case of a circular plasma filament, and in the case of a fluted cross sec-
tion, respectively.

It can be seen that the multipole field near the axis of the system changes appreciably. In the case of
a fluted section even the sign of the field changes, and this must reverse the stabilization effect (destabili-
zation). The change of the multipole field is due to the diamagnetic currents in the plasma conductor in-
duced by the primary external field.

Using the expression (1.13) for &y, we can write
B, = (n — 1) By, (1.15)

This is a formal equation from which one cannot conclude that B, = 0 when épn = 0, since Bn and 6p
were determined above for the two different cases of a circular and fluted section. The relationship be-
tween Bp and 6, arises because for given current Iy they are determined by the multipole field Bp.

1t follows from Egs. (1.14) and (1.15) that when r =4
an e nSnBO, Ben —~ GnBov I Bn l -~ nﬁn I Bol
and therefore the condition (1.6} of applicability of the treatment is satisfied when né, <« 1.

2. Magnetic Field Near the Perburbed Filament

Suppose the plasma conductor undergoes a small perturbation of the m = 1 mode under which its sur-
face is described by the equation

r(8, z, ) =ro(8) -850, z, § = ry(t) + ak; () cos (0 - k), & <1 (2.1)

where ry(6) = a + 6 (0) is the equilibrium surface of the conductor and £(9, 2, t) is the displacement of the
surface due to the perturbation. The field B near the perturbed filament is determined from the equations
B=xy®, AD=0 2.2)

with allowance for the decrease of the perturbation of the field at infinity and the boundary condition

(Bn) =0 : (2.3)
on the plasma surface (2.1). In (2.3), n is the unit vector of the external normal to the plasma surface. Af-
ter expansion in a Taylor series and allowance for the condition (B(ﬂ)n(o))l r=r, = 0, Eq. (2.3) becomes

(B®n™ 4 Bn® 4 £0 (B®n”)/ 0r] [r=r, -= 0 (2.4)
Here and below the superscript 0 is appended to the equilibrium quantities, and 1 to their increments
in the perturbation. In particular, the fields obtained in Sec. 1 must have the superscript 0.

The vectors n{® and n on the equilibrium surface r; have the components (in the linear approxima-
tion in 6 and ¢)

1 36 36 . '
n©® {1_, —— 5 W} =n® {1, — nd, sin nb, 0}

. 2.5

n® { I, S "_5} =0 {0, (1 4 8, cos nB) & sin (8 — O), + kak, sin (0 — 6,)} )
where 6, = +kz is the angle between the x axis (6 = 0) and the direction of the displacement of the axial line
of the filament in the cross section with coordinate z.

Using Egs. (1.16) and (2.5), we obtain from the boundary condition (2.4) in the linear approximation in
0 and ¢
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—BonbE, sin #0 cos (0 — 8;) + Bk, (1 + 8,cosn8)sin (8 — 6y) + B,V |ra — BV |, unb,sin nf = 0 (2.6).
We shall seek the scalar potential &M in the form

. 1
oV = 2 CiKyijn (kr)sin[(1 + jn) 0 — 6] 2.7

i=—1

where Cj are constant coefficients and Kj(x) are Macdonald functions. In this form, &() gatisfies Eq. (2.2)
and the boundary condition at infinity. Substituting Br(l) = 8%(Y)/6r and Bg(l) = (1/x) 8<I>(1)/60 into (2.6), we
obtain . .

1

Bkisin(®—0) + oBib.& % (1—jn) sin{(1+jm)0 — 8] + 3 {CkK n (ka)sin[(d + jn)8 — By] —

J=-1,1 J——1

(2.8)
C;a7 Ky 4jn (ka) nd, sinnBcos [(1 4 jn) 8 — 60]} =0

The prime denotes differentiation with respect to the argument.
Equating to zero the total coefficients of sin[(1 +jn)8—6y) for j = 0, £ 1, we obtain the system of equa-
tions
Bty 4 CokKy' (ka) =0, j=0

Yy (1 — jr) Bdnky + CikK1in (ka) — Yyjnd,Coa"K, (ka) = 0
j=dA

from which we find the coefficients Cj:

_ B.£, o By & | . Ky (ka)
Co=— KK\ (ka) ’ Cimtr = — 2kK, [1 —)n(i " kaKy (ka) )] (2.9)
Since the coefficients Cj for j= 0 are proportional to 6y, the terms remaining in Eq. (2.8) that contain
sin nf cos [(1+jn)8—6;] are of second order in §,, which we here ignore. Thus, in the linear approximation
in 8, Eq. (2.2) and the boundary conditions at infinity and on the plasma surface can be satisfied by choosing
the scalar potential ®(!) in the form (2.7) with the coefficients Cj (2.9).

3. Force Acting on a Perturbed Plasma Filament in the Multipole Field

One of the possible ways of investigating the stability of a plasma conductor with a skin current against
m = 1 mode perturbations under which the surface of the conductor is described by Eq. (2.1) uses the so-
called "model of a flexible filament." In the linear approximation in ¢ one calculates the force F that the mag-
netic field exerts on the perturbed conductor and one then investigates the equation of motion of an infini-
tesimal length of the conductor, Md?t /dt? = F, where M is the relevant mass.

As follows from its derivation, this equation actually describes the transverse (relative to the axis)
oscillations of thin homogeneous disks that are displaced as a whole and moved relative to one another in
the aximuthal direction through the angle 28 = x+kAz.

This crude model must satisfactorily describe the system if the perturbed plasma behaves as an in-
compressible fluid and the force F is purely transverse. These conditions are satisfied adequately if, re-
spectively kvg > €2 and k¢ <~ 1, where vg is the velocity of sound in the plasma and @ is the frequency of os-
cillations (growth rate) of the system. The first inequality is the condition of incompressibility, while the
second, which means that one must consider only "smooth" perturbations, is obtained from the condition
Iy l~1> oy [~ ke

The transverse force F, can be found from the formula

F) = —(1/8n)§ Bn, d] @E.1)

where the integration is around the bounding contour of the conductor cross section. The contour arc ele-
ment

dl = {[r (8)]* 4 [dr / d9)2y»
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in the considered case, when r(6) is given by Eq. (2.1), is equal in the linear approximation in 6 and ¢ to

dl=la+ 8+ &+ (1/a)8% + 8°E))do

Taking into account the expressions (2.5) for n, one can obtain the components of the vector n,dl
n.dl = {cose + E1 08 (20 — 0,) + 10,E; sin By sin 26 — '/ody 2 (1 + jn)cos(1 + jn)0
j=—1,1
+E1cosBcos [(1 + jn) 6 — e.,u} add
nydl = {sin 8 4 &, sin (20 — B5) — nd.t; cos 8, sin nd 3.2)

— b 2 (1 + jr)sin( + jn)0

I=-1,1
+ EusinOcos|(1 + jn) 0— 6,1} 4 db
The magnetic pressure on the surface of the perturbed filament in the linear approximation in 6 and ¢
is '

(1/8“) B? ]"=r,+g =(1/8n) {B(O)S 4+ 2B(0)B(l) + §aB(0)2 Jor + 6%[]3(0)2 4 2B(0)B(1) + EaB(o)z ] or} }|

=

After the calculations we obtain

1 1 :
N 302{1 - X bycos((d + jn) 6 — 00]}
F=m-1
bo=2(Vy—1)t, Y= —i®K;(ka)/kaK; (ka) (3.3)
bj—gy = {¥1 +n?+ jn + Wiin (1 + )[4 — jn(1 - Y1) 8.8
Analysis of (3.2) and (3.3) shows that the terms with j =1, n = 2, and also the third and fourth terms
in (3.2) do not contribute to the integral (3.1). The expressions for the components of the force F; are
Fay = Ue{Bo* (1 — ¥)) = BB, (Y2 4 o¥, — YO} &y (3.4)
where ¢y = gt c086, Ey =af ;sinf, and the upper sign in front of the term with BB, corresponds to the x com-
ponent, the lower to the y component. In (3.4) we have used the relation 6, = B,/B, in accordance with (1.13).
Ifka <1, then ¥, ~ 1, 1-¥, ~ (kg)? In(2/7ka) (In 1 = 0.577... is Euler's constant) and (3.4) yields for
Fx, y
Fiy = Ya{Bo® (ka)* In (2 / nka) = */4BoB,} Evyy (3.5)

If the quadrupole field is generated by currents I, in two pairs of rods that are connected in antiphase
and are situated at a distance b from the axis of the system, then it follows from (1.4) that B, =8(a/b)?(21,/c q)
and the second term in the curly brackets of (3.5) takes the form +40II,/b%2% This expression is half that
obtained in [3], in which a simplified scheme for calculating F was used.

We give without calculations the result obtained by calculating Fx,y for 6 =0. To terms quadratic in
Bj, which determine the "minimum B" effect

Frp = (Bt (1 — W) F BB, + oBy* 1 — Yy (W1 + i)} &y 3.6)

Fey = Y {Bo? (ka)2In (2/ nka) T BoB, + Yy (1 — 1) B,y ha << 1 3.7)
Comparing (3.4) and (3.5) with (3.6) and (3.7), we can separate out the correction to Fy,y linear in By
due to the fluting of the filament surface:
TaBoBy (W 4 3, ¥, — Y8y = &£ YieBoBokry,  ka <1

which exceeds in absolute magnitude by a factor 9/4 the force of the interaction of the quadrupole field with
the current I in the case 6 =0 and has the opposite sign.

Inspection of (3.4)-(3.7) shows that the interaction of the multipole field with the current I, in the plas-
ma conductor occurs only when n=2 (quadrupole field). The deformation of the surface of the plasma fila-
ment under the influence of the quadrupole field leads in the region of the long-wave perturbations to re-
versal of the effect of the interaction between the quadrupole field and the current in the filament: whereas

22



perturbations in the zx plane (for the field (2.1) considered here) are stabilized and those in the zy plane are

destabilized when the filament has a circular cross section [1, 2], the situation is reversed as regards the
stabilization of long-wave kink perturbations of a filament with elliptical cross section.

4. Multipole Dynamical Stabilization of a z Pinch

The interaction of the quadrupole field with the current in the plasma filament depends on the direc-
tion in which the filament is displaced in the perturbation: in one plane (zy, for example) the filament is
stabilized; in the other (zx), destabilized. Periodic variation with the time of the quadrupole field or the
current in the filament leads to adynamic stabilizing effect {1-4], which does not depend on the direction
of displacement. For a multipole field of higher order (n > 2) a similar cffect cannot occur according to the
results of Sec. 3.

Experiments on the multipole dynamic stabilization of a z pinch were made with quadrupole [5, 6]
and hexagonal (n=3) [7] high-frequency fields. In both cases a stabilizing cffect was observed, not only in
the region of long-wave perturbations, as was predicted by the theory of [1, 2], but quite generally for kinks
of any wavelength. This extension of the range of multipole dynamic stabilization (n > 2, short-wave per-
turbations) indicates that some additional mechanisms must be invoked to explain the stabilization effect (in
addition to the interaction between the multipole field and the current in the filament considered here and
earlier in [1, 2]). One of them may be associated with rapid oscillations of the plasma surface under the
influence of the alternating multipole field. This suggestion is based on the results of [8], in which a gen-
eral investigation was made of the influence of high-frequency oscillations of the plasma surface on its sta-
bility against slowly increasing perturbations.

In the multipole field (1.14) with Bn = By cos wt the boundary of the plasma must follow the magnetic
mwall" so that the plasma cross section takes the fluted form (1.5), which oscillates on account of (1.15) with
the frequency  of the field if vg > wdna. This condition is usually satisfied experimentally, since a rela-
tively small quantity ~ 107 cm/sec (w ~ 10" sec™!, dpa~1 em) occurs on the right-hand side. Ellipticity of
the filament cross section in an alternating quadrupole ficld was observed in [6]. Rapid oscillations of the
filament surface in an alternating multipole field for any n must give a stabilizing effect that is stronger in
the region of small-scale short-wave perturbations.

I thank S. M. Osovets and M. L. Levin for discussing the paper.
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